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ON THE INTERPRETATION OF SHADOW-MOIRE FRINGES

by 3

J. Buitrago and A. J. Durelli

ABSTRACT

Shadow-moiré is presented as one of several means of determining
loci of constant height in curved surfaces (isotathmics). A general
expression to interpret the fringes is derived taking into consideration

possible rotations and translation of the grating. A discussion of the

influence of such rotations and translation on the sensitivity of the

response is also presented. Furthermore, simplified equations are f

obtained for particular cases of practical interest. An example of

(L3 il

o . application to the case of an inverted perforated tube is shown.
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ON THE INTERPRETATION OF SHADOW—MOIRé FRINGES

by

J. Buitrago and A. J. Durelli

Introduction

The solution of the problem of determining topographical contours of
an arbitrary surface can be approached using optical methods. Different
techniques can be used depending on the actual depth of the surface, its
size and desired sensitivity. Newton rings have a sensitivity of the order
on one tenth of the wave length used, but only for a very small range of
depth. Holographic interferometry is useful when the depths to record are
also very small, is subjected to strict requirements of stability of the
instrumentation and is usually expensive.

The simplest method seems to be the projection-grating moiré whereby
one projects a grating onto the surface of a plate before deformation and

(1) (@) ()

then again after deformation The superposition of the deformed

and undeformed grating images, when the projection is a parallel one,

yields moiré fringes of equal deflection (isothetics w). The method can be
applied to surfaces which are originally curved and may then give the isotath-

mics or loci of equal depth (or height) with respect to a plane of refarence.

Projeccion moiré is suitable for relatively large deflections (0.1 mm and up) .

Shadow-moiré fringes are produced when the master placed in front of
the model interferes with its shadow on the surface of the model. Only omne

grating is required instead of the two used with the projection grating
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method and the surface of the model should be matte in order to receive the
shadow of the projected grating.

Shadow~moiré, like the projection-grating method, does not require
coherent light and is also of simple implementation. The shadow-moiré
patterns may also be isothetics w, (for the case of bent plates for
instance) or isostathmics when the observed surface is not originally
plane, the fringe pattern giving then the map of the height of points of
the surface with respect to the reference plane.

(4)

were the first to suggest the use of shadow-moiré

(5)

Weller and Shepard

to determine loci of depth on surfaces. Later Theocaris used the method

(6)

to measure deflections of flexed plates. Theocaris also generated

isopachics by shadow-moiré that in combination with isochromatics were used
to separate principal stresses. Successful applications, of shadow-moiré
techniques to the determination of living bodies topography have been

(7,8) 9)

reported by Takasaki . Recently, Chiang proposed the uses of a

(10)

composite grating with two different pitches and Marasco obtained
displacements in a hyperboloid-parabolic shell with a non-plane

grating.

Interpretation of Shadow-Moire Fringes

Shadow-moiré fringes can be mathematically interpreted by using

¢E1,12)

communication theory although geometric optics suffices to

completely analyze the phenomenon.

A geometric approach to the interpretation of shadow-moiré

(13)

fringes has been published by Pirodda However, the author did




not consider the effect of rotations of the grating. In what follows
a completely general analysis of the shadow-moire fringes is given
including consideration of positions of the grating that require
rotations and translation from the normal position defined as the
position at which the grating is in contact with the body and is
normal to axis of the camera. The influence of these motions on the

sensitivity of the system is also considered.

General Equation: Defining the 3-D space by a Cartesian system of

coordinates x, y and z, consider any plane x-y wnere a grating of
pitch p has been translated from the model a distance ¢ and then
rotated an angle 9, (Fig. 1). The fringe order at an arbitrary

point P(x) can be expressed as:

(w+c+x tan 61) (dz+dl)tan a-x
{: - cos ©

P dz+dl+w+c 1
(d +d,)tan a-x
X Zh -1 X

IO SR - = —

dz o cos el sin al[ dz+d1' tan (el tan dz )

(d_Hd,)tan a-x
X -1 Zan ]

+ e

d_rore tan (can 3, e i 91)]} @

If cthe grating is further rotated in the plane y-z (Fig. 2) by an angle
32 and in the plame z-x by an angle 33 (Fig. 3) Eq. (1) can be made to
represent the most general expression for the fringe order at a point
when p/cos 83 is substituted for p and d-(h-z)sin 32 for dZ where h is
the total height of the model. =Equation (1) can also be writtenm in terms
of the total distance from the grating to the model by letting

w, =w -+ Cc + X tang

e A detailed derivation of Eq. (1) is presented in

1
the Appendix.

An explicit solution of Eq. (1) for either w or w, does not seem

easy to obtain. However, it is possible to solve it numerically by



and combining them

redefining it in terms of functions of w or W,
into the form Fl(w,n) = Fz(w) that can be solved by a trial and error

algorithm.

Influence of Rotations and Translation on the Sensitivity: In practical

cases it is convenient to position the camera and light source
sufficiently far from the model so that dz is very large compared to

(w + c) and to x and consequently y=a and ¢=0. Under these conditions
it is possible to explicitly show the influence of the rotations as
well as the translation of the grating plane on the sensitivity of the
response of the system. The sensitivity can be quantified as the ratio
of the fringe order at a point to its actual distance to the grating

(Fig. 1).

a) Rotatiém about the z axis: Letting 8, = 93 = 0 Eq. (1) reduces to

n-=

O |

(w+ c + x tan 61)(tana cosel + sinel tano tanel)

therefore the sensitivity

[0}
[}
=}
~
£
[}
o |+

tan o sec 8 (2)

By examining Eq. (2), it is seen that for a given depth and pitch the
sensitivity varies as the secant of the rotation 8;. From 0 to 20
degrees, the sensitivity increases only 67% but reaches 417% for al
equal to 45°. However, large values of 8, bring the grating plane
further apart from the model producing the fading of the fringes.

The increase in sensitivity has to be compromised with the quality of

the fringes.
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b) Rotation about x axis: Letting 8y = 62 = 0, Eq. (1) becomes

i ) l_(dz+dl)tan a~x - l-tan g =
e T d_+d +ute D

Since tan o f/(dz +d;) and d, = d-(h~2z)sin 8, the sensitivity is

given by

S

1 &
A = (4)

d-(h-z) sin 62

‘- If 4 i}(h—z) the change in sensitivity obtained by rotating the grating

plane about the x axis is neglible.

c) Rotation about y axis: Letting €; =8, =0 in Eq. (1) gives
8y = = cos 8, tan a (5)
v P 0533

In this instance the sensitivity is proportional to the cosine of the
angle of rotation. As 63 approaches 90° the pitch becomes very large
(p' = p/cos 83) and the fringes fade. The sensitivity decreases as

63 increases.

d) Rigid translation in the x-~y plane: In this case Ry =Bpmly=d

and the sensitivity is expressed by

s DN NT

1
s, ==t 6
5 an o (6)

& Translation of the grating plane does not bring about any change in the

{ sensitivity but as in case a) will tend to produce weaker fringes. i

Translation of the grating plane is of no practical interest.

Simplified Equations: Three cases of practical importance, determined

by the number of elements used in the system will be considered. The




grating will touch the body and its plane will be perpendicular to the
axis of the camera.
a) Point source and camera: In Eq. (1) let 01 = 62 = 63 = ¢c=0 (Fig. 4)

The distance dz becomes constant and the fringe order at representative

points 1 and 2 is given by

- (d+dl)tana -x
n = = [

152 P d + dl + w i d +w ]

It can be noted from Eq. (7) that if the body has a plane of symmetry

€))

coinciding with the y - 2z plgne, the fringe pattern will not be symmetric
because of the sign of x. In practice the zero fringe order is arbitrarily
assigned to the point of contact between the grating and the surfaces.
Knowing the fringe order, the grating pitch and the geometry of the optical

system, Eq. (7) can be solved for w as follows

RS SO S ae
W skt 77k e (8)

where

d[(d+dl) tga - x - np]-np(d+dl) + x(d+dl)
(d+d1) tga - np

The + or - sign in Eq. (8) is selected to obtain the desired sign
for w. Eq. (8) is valid for any z.

A case of practical importance occurs when the source and the camera
focusing plane lay on a plane that is parallel to the grating plane.

Letting dl = 0 in Eq. (7) the fringe order is given by

- W dtga - x . x , _dtga W
n1,2 P [ d+w + d+w ] d+w p )

It can be observed from this expression that the fringe pattern will be
symmetric with respect to x if the body is symmetric with respect to z.

Substituting now tana by f£/d, the displacement w is given by

-6




A

= npd
v = Eoap (10)

b) Collimated incident light and camera: If in the previous set-up a
collimator is added between the source and the grating Fig. (5) the object
receives incident parallel rays of light. This is equivalent to locating
the source at an infinite distance from the object. Taking the limit of

Eq. (7), as dl approaches infinity, the fringe order is given by

n

w X
= = [tga + g (11) ]

1,2
Again the pattern corresponding to a symmetric body will not be symmetric
becauée of the sign of x. Solving for w in Eq. (11)
1 b2 npd
w= -3k - /4 k] + = (12)

where i

o d -np +x
kl tga

c) Collimated incident and reflected light: This condition can be
obtained by inserting another collimator, this one between the grating and
the camera as depicted in Fig. (6). In this instance the fringe order can

be arrived at by letting dl + d go to infinity in Eq. (7). Then

W
n = = - tga

L2 P
thus l3)

v
tgo

Experimental Considerations

Set up: Of the simplified cases presented above, the last one seems to
be the most attractive because of the simplicity of Eq. (13). Unfortunately, 3

as the bodies grow larger, wider collimated beams are required, which in

=




turn implies larger diameter lenses. When of good quality, these lenses

are difficult to obtain at a reasonable cost.

The use of a point source of light and a camera appears to have
practical advantages although the analysis of the pattern is more compli-
cated (Eq. 8). However, a simplified expression can be obtained when the
source and camera are on a plane parallel to the grating (Eq. 10). This
three element system (source, grating and camera) is frequently the most

advantageous.

Sensitivity: The sensitivity of the method is a direct function of the
pitch of the grating and the angle of observation. Very small pitches
cannot be used because the very fine gratings diffract the light. The

The appropriate pitch and angle of observation have to be selected for the

particular range of heights to be measured.

Fringe Definition: When coarse gratings are used, it is advantageous to

have a thin light source parallel to the direction of the grating lines to

minimize the penumbra. The thinner the source the sharper the fringes.

pT—

It should be remembered that shadow-moiré fringes are formed at planes

located at different distances from the grating plane and should be

by | photographed using small diaphram apertures. When the bodies to be studied
I have a plane of symmetry, it jis advisable to use two light sources symmet-
g rically located with respect to the camera axis to avoid that the fringes
that appear on the side near one source of light present different

intensity than the fringes at the opposite side.

Fringe definition may also be lost at areas at which the gradients are

steep. In these cases it is recommended to move the grating during the &
(6,11) 4

exposure
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Sources: White light sources of about 500 to 1000 watts are usually

required to generate proper intensity. Incandescent filament lamps are

most commonly used and the filament is then aligned with the grating lines.
To sharpen the fringes illumination can be passed through a slit, but this

decreases the intensity.

Application

To experimentally verify some of the previously develcped equatioms,
a sphere 6.9 in (175 mm) in diameter was analyzed. For convenience, the
selected set-up consisted of a point light source and a camera laying on
a plane parallel to the grating. The fringe pattern shown in Fig. 7 is
symmetric as predicted by Eq. (9) for symmetric surfaces. Surface depths
referred to the grating plane (tangent to the sphere) were computed using
E | Eq. (10) and compared to the values obtained from geometry. Fig. 8 shows
this comparison. The agreement is very good.
As a more general application of the shadow-moire technique, the
* anticlastic surface of a perforated tube, turned inside out was also

studied (Fig. 9). The optical arrangement consisted of collimated incident

! light and camera. In this instance, even though the surface is symmetric

.

v

with respect to x, the fringe order is not (Fig. 10) in accordance with

Eq. (11), where the alternate sign of x for two points symmetrically

PN

located about the vertical axis yields different values af n. To further

R Ty

. | : illustrate this effect, the fringe order n has been represented along three

different lines on the surface of the tube. On the vertical axis, where

x = 0, the fringe distribution exhibits complete symmetry. However, for any
other off-the-vertical-axis line asymmetry appears, reaching a maximum
along the horizontal axis. The actual depths, on the other hand, have to

remain symmetric and can be obtained using Eq. (12).
*e
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APPENDIX: General Equation for Interpretation of Shadow-Moiré

.Referring to Fig. 1, consider the grating plane that has been translated

i
i
i

along the y axis an amount c from the highest point on an arbitrary surface §
and subsequently rotated through an angle el, about the z axis (positive
rotation accordiné to the vectorial product convention). The fringe order
corresponding to the interference of the shadow cast at the point P and the
grating itself is simply,

n=a'/p (A.1)
a' being che distance measured on the grating plane between the incident and
reflected rays, and p the pitch of the grating. Since only one grating is
used, dark areas of the grating interfere with their own shadows and conse-
quently the integer fringe orders correspond to light fringes while the half

orders to dark fringes(lA)(Fig. 7)

From geometry it is seen that

a'= [(al+a2)cosel +e+8)]1/p (A.2)
where
al+a2 = (wte+x tanel)(tanx + tan¢) (A.3)
e =a, sineltan(el-¢) = (wetx :anel)tany sineltan(el-¢) @A.4)
and
f{ g = a; sin6 tan(e +y) = (w+ex tang, ) tan¢sing, tan(8,+y) @.3)

y and ¢ are the angles the incident and the reflected rays make with the
normal to the contacting normal position of the grating plane respectively and
w the depth of the point P from that position.

Equations(aA.3), (A.4) and (A.5) are now substituted into Eq. (A.2).

L
Y .

After collecting terms a' is
a' = (w+etx canel){(tany+can¢)cosel+sinel[tanytan(el-¢)+canotan(y+el)]}CA.G)

f-x

dz+dl+w+c

tanY =

(A.7)




and

Oy T (a.8)

where dz is the variable distance between the camera and the grating plane
for the different x = constant planes as produced by the rotation of the grating
about the x axis. According to Fig. 2, dz can be expressed as

dz =4 - (h-z)sine2 (A.9)
h representing the total height of the model and d the constant distant
between the camera and the original position of the grating. Moreover,
the distance f between the camera optical axis and the point light source is

f = (dz + dl)tana (A.10)
a is referred to as the illumination angle and d1 is the distance between
the camera and the source measured along the axis of the camera.

Using the expressions for di and f ?n(A.7)and(A.8),the tangents of

y and ¢ are then given by

Gy = [d—(h-z)sin62+d1]tana (D)
d—(h-z)sinez+d +w+c
1
tang = X (a.12)
d=(h-z)sin6 ,+w+c *

2

Now, eliminating the tany and tan¢ from(A.6)using(A.ll)and(A.12),and dividing

through by the pitch modified by the grating rotation 63 (Fig. 3) about vy,

the fringe order as determined by Eq.(A.l)finally is obtained as

(wHc+x tanel){[ <d—(h—z)sin62+dl>tana - x X
o pcose3 d-(h—z)sinez+dl+w+c +-d—(h—z)sinez+w+c]c°sel
<d-(h-z)sinez+d1>tana-x 3 &
s d-(h-z)sinb,+d e tan(8)-tan 4 hoz)sin e )
g 5 e <d-(h-z)sing,+d >tana - x w1} a3t
d—(h—z)sin62+w+c d-(h-z)sin02+d1+w+c
A-2




It can be concluded, therefore, that the most general interpretation of the

1 shadow moiré fringe order at any point on an arbitrary surface can completely
| be defined in terms of the geometry of the optical system lay-out and the
rotations and translation of the grating plane. Translations perpendicular

to the camera axis do not affect the fringe value.
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w=npd/(f-np)

Fig. 7 Isostathmics of a Spherical Surface Obtained Using
Shadow-Moire. Camera and Light Source on a Plane

Parallel to the Grating
0-63
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Fig. g Depth of a Spherical Surface from the Grating Plane

Tangent to the Surface, Obtained Using Shadow Moire
Fringes Produced Having the Camera and Light Source
on a Plane Parallel to the Grating
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